
33 

4. Organisation and structure of data
Organisation and structure of data
Representation of numbers 
The nature of data 

Data is made up of raw facts and figures and can be represented in many different forms 
including text, numbers, pictures, sounds and video clips.  Information can be derived from 
data when it is processed. 

Why data needs to be converted into binary format 

You will need to be familiar with three different counting systems.  These are denary, binary 
and hexadecimal. 

Denary 

The first counting system that you need to be familiar with is the denary counting system, 
also known as the Base 10 or decimal counting system.  In the denary counting system, the 
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are used to represent numbers.  The number 138 for example, 
actually means 1 ‘hundred’, 3 ‘tens’ and 8 ‘units’. This gives the total one hundred and 
thirty-eight: 

Binary 

The second counting system that you need to be familiar with is the binary counting 
systems, also known as the Base 2 counting system.  In order for data to be processed by a 
computer system, it must be converted into binary format.  This is because computer 
systems can only store and process Binary digITs, also known as BITs.  A BIT is either a 1 or 0.  
You may think of this as a light switch, where the switch is either ON or OFF: 

• If the switch is ON it is stored as the digit 1.
• If the switch is OFF it is stored as the digit 0.



34 

INTERESTING FACT 
Up until the late 20th century, traditional Chinese 

weights and measurements used in the marketplace 
used the hexadecimal counting system. Other cultures 
used different base counting systems, e.g. the ancient 

Babylonians used a Base 60 counting system. 

A binary number is a string of BITs, for example 10001010.  

The binary number 10001010 is therefore a binary representation of the denary number 
138 (128 + 8 + 2).   

Hexadecimal numbers representing binary numbers 

The third counting system that you need to be familiar with is the hexadecimal counting 
system, also known as the Base 16 counting system.  In the hexadecimal counting system, 
the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are used to represent 1–9 and then the characters A, B, C, 
D, E and F are used to represent 10 –15.  The 
hexadecimal number 8A for example: 

The hexadecimal number 8A therefore represents 8 ‘sixteens’ and 10 ‘units’. This gives the 
total one hundred and thirty-eight.  Remember that A = 10, B = 11, C = 12, D = 13, E = 14, F = 
15. 

Hexadecimal is widely used as 
binary numbers can be quickly 
converted into hexadecimal 
numbers that are more convenient 
for humans to use.  For example, a 
telephone conversation where you 
might read out the binary number 

10001010 could cause confusion.  It would be easier to simply say 8A and mistakes are less 
likely to be made. 



35 

Denary to binary and hexadecimal, binary to denary and hexadecimal, 
hexadecimal to binary and denary 

In this section, we will discuss how to convert between different number systems.  

Denary to binary 

One way of converting a denary number to a binary number is by drawing a Base 2 table 
from the right to the left. 

128 64 32 16 8 4 2 1 

In this example, we will convert the denary number 198 into a binary number.  Take 198 and 
see if it is more than the first number on the left.  In this case, 128 is the number on the left 
and so we write a 1 under the heading 128. 

128 64 32 16 8 4 2 1 
1 

We now deduct 128 from our original denary number, which leaves 70.  The next number in 
our Base 2 table is 64.  If the number remaining, 70, is more than the next number on the 
left, 64, write the number 1 under the heading 64. 

128 64 32 16 8 4 2 1 
1 1 

We now repeat the process again and deduct 64 from 70, which leaves 6.  The next number 
in our Base 2 table is 32.  If the number remaining, 6, is more than the next number on the 
left, 32, write the number 1 under the heading 32.  However, in this case the number 
remaining is less than the next number on the left, so we write a 0 under the heading 32. 

128 64 32 16 8 4 2 1 
1 1 0 

This process is repeated until you reach the final heading and the binary number for the 
denary number 198 is found:  

128 64 32 16 8 4 2 1 
1 1 0 0 0 1 1 0 

The binary number for the denary number 198 is therefore 11000110 (128 + 64 + 4 + 2). 



36 

Denary to hexadecimal 

You may wish to convert a denary number into a hexadecimal number.  To do this, take the 
number 198 from our previous example and draw a Base 16 table, from right to left, as 
before. 

Take 198 and see if it is more than the first number on the left.  In this case, 256 is the 
number on the left and so we write a 0 under the heading 256. 

256 16 1 
0 

The next number in our Base 16 table is 16.  If the number remaining, 198, is more than the 
next number on the left, 16, work out how many 16s are needed without going over the 
number remaining.  In this case it is C (C = 12, 12 x 16 = 192). 

Remember that A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 

256 16 1 
0 C 

We now deduct 192 from our remaining denary number, 198, which leaves 6.  The next 
number in our Base 16 table is 1.  If the number remaining, 6, is more than the next number 
on the left, 1, work out how many 1s are needed without going over the number remaining.  
In this case it is 6. 

256 16 1 
0 C 6 

The hexadecimal number for the denary number 198 is therefore C6. 

You may find it easier to convert a denary number into a binary number first and then into a 
hexadecimal number.  See the example binary to hexadecimal below. 



37 

Binary to denary 

To convert a binary number into a denary number, draw a Base 2 table from right to left and 
populate the table with the binary number you are converting.  In this case we will use 
00100011. 

128 64 32 16 8 4 2 1 
0 0 1 0 0 0 1 1 

Simply convert the binary number into a denary number by adding the headings with a 1 
under them: 32 + 2 + 1 = 35.  The denary number for the binary number 00100011 is 
therefore 35. 

Binary to hexadecimal 

To convert a binary number into a hexadecimal number, there is a shortcut that you can use 
by drawing a Base 2 table from right to left and then populating the table with the binary 
number you are converting.  In this case we will use 00101011. 

128 64 32 16 8 4 2 1 
0 0 1 0 1 0 1 1 

Now split the Base 2 table into two smaller 4-bit Base 2 tables. 

128 64 32 16 8 4 2 1 
0 0 1 0 1 0 1 1 

Now change the headings of the left 4-bit table. 

8 4 2 1 8 4 2 1 
0 0 1 0 1 0 1 1 

 2   B 
Now take the hexadecimal number of each 4-bit table and this is the converted hexadecimal 
number. 

256 16 1 
0 2 B 

The hexadecimal number for the binary number 00101011 is therefore 2B.

Remember that A = 
10, B = 11, C = 12, D = 

13, E = 14, F = 15. 



38 

Hexadecimal to denary 
You may wish to convert a hexadecimal number into a denary number.  To do this you may 
take the number C6 and draw a Base 16 table, from right to left as before. 

256 16 1 
0 C 6 

Now multiply each heading to obtain the denary converted number. 

C(12) x 16 
6 x 1 

= 
= 

192 
6 + 

198 

The denary number for the hexadecimal number C6 is therefore 198. 

Hexadecimal to binary 
To convert a hexadecimal number into a binary number, there is a shortcut that you can use 
similar to the one above by drawing two 4-bit Base 2 tables from right to left. 

8 4 2 1 8 4 2 1 

In this example, we will convert the hexadecimal number 2B into a binary number.  First 
start by representing the first number, 2, in the left table. 

8 4 2 1 8 4 2 1 
0 0 1 0 

Then complete the second table by representing B in the right table, remembering that B = 
11. 

8 4 2 1 8 4 2 1 
0 0 1 0 1 0 1 1 

Now re-label the headings in the left table as shown below and join the two 4-bit tables 
together to make one 8-bit table. 

128 64 32 16 8 4 2 1 
0 0 1 0 1 0 1 1 



39 

128 64 32 16 8 4 2 1 
0 0 1 0 1 0 1 1 

And so, the hexadecimal number 2B can be represented as 00101011 in binary number 
form. 

Arithmetic shift functions. 

Shifts are manipulations of bit patterns. A shift involves moving the bits in a specified 
direction, either left or right, by a specified number of places  

e.g. for an 8 bit register

Shift left by 2 places of    produces 

Shift right by 2 places of   produces 

Arithmetic shifts can be used for division and multiplication. 

Arithmetic shift right 

This operation preserves the sign of a number and will divide a binary number by 2 at each 
shift. It will work for positive and negative numbers. 

At each shift the right hand bit is lost and a copy of the sign bit is inserted to the left. 

Sign bit 

   Drop out     Shift  Copy of sign bit 

Negative integer in Two’s complement:  - 63 right shift 1 place = - 32 

Drop out     Shift  Copy of sign bit 

Positive integer in Two’s complement: 65 right shift 1 place = 32 

Note when the right bit has value i.e. when the shift is applied to an odd number the result is 
rounded down to the next even integer. 

00110000 11000000 

00001100 00110000 

  _ _100000 11100000 110000001 

  _ _100000 00100000 010000001 



40 

Arithmetic shift left 

Similar, but at each shift the sign bit is lost and a 0 bit is moved in to the right. The effect of 
each shift is to multiply the integer x 2. The process can be repeated until the sign bit is 
changed, at which point overflow occurs. 

       Sign bit drops out  Shift  0 bit inserted 

Negative integer in Two’s complement:  - 64 left shift 1 place = - 128 

       Sign bit drops out  Shift  0 bit 

Positive integer in Two’s complement:  32 left shift 1 place = 64 

       Sign bit drops out  Shift  0 bit 

Positive integer in Two’s complement:  64 left shift 1 place = overflow 

The shift changes the sign bit and overflow occurs. 

How sound can be sampled and stored digitally 

As we have already established, a computer system is only able to store and process binary 
digits, as it is a digital device.  Since this is the case, how can sound be stored as it is an 
analogue signal not digital? If an analogue signal, such as sound, is sent to a computer 
system, it has to be converted into a digital signal before it can be processed. 

Sound is converted into a digital signal by a process called sampling.  Sampling is where 
hardware, such as a microphone, measures the level of sound many times per second and 
records this as binary digits. 

10000000 11000000 1000000_ 

01000000 00100000 0100000_ 

10000000 01000000 1000000_ 



41 

The number of times that the sound level is sampled per second is called the sampling 
frequency.  The higher the sampling frequency, the better the quality of the sound recorded.  
A typical sampling frequency is 44,000 times per second, also known 
as 44 kHz.  This is the sampling frequency used on most audio CDs. 

Sound sampled at 44 kHz in stereo will produce a large amount of 
data and as such, this data may need to be compressed.  When 
sound files are compressed, data is removed to reduce the size.  This 
reduction in size means that  

How an image is represented by pixels in binary format 

Images on a computer system are made up of thousands of small coloured dots, known as 
pixels (short for picture elements).  Bitmap images are stored as an array of pixels.  A black 
and white bitmap image will store a 1 for a black pixel and 0 for a white pixel. 

0000000 

This bitmap image can be represented 
using a 56 bits (or 7 bytes). 

0100010 

0000000 

0001000 

0000000 

0100010 

0011100 

0000000 

-15

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Vo
lta

ge
 (m

V)
 

Time (s) 

Example of sampling analogue 
sound 

DIGITAL AUDIO QUALITY 

Sample rate – the number of audio 
samples captured every second 
Bit depth – the number of bits 
available for each clip 
Bit rate – the number of bits used 
per second of audio 



42 

A colour bitmap image is stored by replacing the 1s and 0s above with a longer number that 
represents how much red, green and blue (RGB) is required in the colour of each pixel; this 
is known as colour depth.  In a 256-colour palette, the image would require 1 byte of storage 
per pixel – so we would need 448 bits (or 56 bytes) to store the image above in colour.  
There are other colour depths available, which can store more information about the 
colours in each pixel of an image.  The more information stored about the colour of each 
pixel, the larger the file size becomes.   

You may also have heard of vector images.  These images do not store the data by pixels, 
but are a set of instructions for drawing a geometric shape.  The advantages of a vector 
image are that they can be scaled without loss of quality (pixilation etc.) and use less storage 
space. 

Images require a large amount of storage space and as such, may need to be compressed.  

Why metadata needs to be included in an image file (including height, width, 
colour depth) 

The term metadata refers to ‘data about data’.  Key properties that are needed to display an 
image correctly are stored as metadata.  Data such as an image’s height, width and colour 
depth are typical examples of data stored in the metadata about an image.  Without 
metadata, a computer system may render an image incorrectly on screen, such as displaying 
all pixels in one row. 

Other data may also be stored in the metadata of an image file, such as the date the image 
was made, the geographical location of a photograph. 



43 

INTERESTING FACT 
Before the widespread adoption of graphical 
user interfaces, programmers used the ASCII 
character set to design simple interfaces. Try 

searching for some on the Internet. 

Binary numbers representing characters 

A character can be a letter, digit, space, punctuation mark or various other symbols.  When 
characters are stored on a computer system, they are stored as a binary number. 

It is important that computer systems recognise that characters can be represented 
differently by other computer systems; otherwise data could not be exchanged between 
computers. 

The terms ‘character set’, Unicode and American Standard Code for 
Information Interchange (ASCII) 

In order to allow for data exchange between computer systems, character sets were 
devised.  A character set is a table that maps a character with a unique binary number. 

One such character set is the 7-bit American Standard Code for Information Interchange 
(ASCII).  Part of the ASCII character set, that includes printable characters only, can be seen 
in the table overleaf. 



44 

Denary Binary Hex Character Denary Binary Hex Character Denary Binary Hex Character 
32 100000 20 space 64 1000000 40 @ 96 1100000 60 ` 

33 100001 21 ! 65 1000001 41 A 97 1100001 61 a 

34 100010 22 " 66 1000010 42 B 98 1100010 62 b 

35 100011 23 # 67 1000011 43 C 99 1100011 63 c 

36 100100 24 $ 68 1000100 44 D 100 1100100 64 d 

37 100101 25 % 69 1000101 45 E 101 1100101 65 e 

38 100110 26 & 70 1000110 46 F 102 1100110 66 f 

39 100111 27 ' 71 1000111 47 G 103 1100111 67 g 

40 101000 28 ( 72 1001000 48 H 104 1101000 68 h 

41 101001 29 ) 73 1001001 49 I 105 1101001 69 i 

42 101010 2A * 74 1001010 4A J 106 1101010 6A j 

43 101011 2B + 75 1001011 4B K 107 1101011 6B k 

44 101100 2C , 76 1001100 4C L 108 1101100 6C l 

45 101101 2D - 77 1001101 4D M 109 1101101 6D m 

46 101110 2E . 78 1001110 4E N 110 1101110 6E n 

47 101111 2F / 79 1001111 4F O 111 1101111 6F o 

48 110000 30 0 80 1010000 50 P 112 1110000 70 p 

49 110001 31 1 81 1010001 51 Q 113 1110001 71 q 

50 110010 32 2 82 1010010 52 R 114 1110010 72 r 

51 110011 33 3 83 1010011 53 S 115 1110011 73 s 

52 110100 34 4 84 1010100 54 T 116 1110100 74 t 

53 110101 35 5 85 1010101 55 U 117 1110101 75 u 

54 110110 36 6 86 1010110 56 V 118 1110110 76 v 

55 110111 37 7 87 1010111 57 W 119 1110111 77 w 

56 111000 38 8 88 1011000 58 X 120 1111000 78 x 

57 111001 39 9 89 1011001 59 Y 121 1111001 79 y 

58 111010 3A : 90 1011010 5A Z 122 1111010 7A z 

59 111011 3B ; 91 1011011 5B [ 123 1111011 7B { 

60 111100 3C <  92 1011100 5C \ 124 1111100 7C | 

61 111101 3D = 93 1011101 5D ] 125 1111101 7D } 

62 111110 3E >  94 1011110 5E ^ 126 1111110 7E ~ 

63 111111 3F ? 95 1011111 5F _ 

Using the ASCII character set, the character A would be stored as the binary number 
1000001. 

The problem with using this ASCII character set is that it is only able to represent 128 
different characters and computer systems need to be able to store more characters than 
this.  For example, you may have noticed that the £ character is missing from the table 
above.  As a result, other character sets were developed and used to allow computer 
systems to store more characters. 



45 

Unicode is a standard character set that has combined and replaced many others.  It was 
originally an extension to the ASCII character set and it contains many of the characters 
used around the world. 

Data types such as: integer, real, Boolean, character, string 

Many different data types can be stored on a computer system.  The data types that are 
commonly used are as follows: 

Data 
type 

Description Examples 

Integer Whole numbers, positive or 
negative 

42, -11, 0 

Real Numbers, including fractions or 
decimal points 

12.9, -17.50, 28.0 

Boolean True or false 1 or 0 

Character Letter, digit, space, punctuation 
mark or various other symbols 

'A', 'b', '7','?' 

String A sequence of characters ‘Computer science’ 
‘The cat sat on the 
mat’ 

Data structures 

A data structure is a specific way of organising data within memory so that it can be 
processed efficiently. There will be a relationship between the data items that will vary 
according to the type of data structure being used. 

Static data structure 

A static data structure is designed to store a known number of data items.  The values of the 
data can be changed but the memory size is fixed. An array is an example of a static data 
structure; we can change the values of the elements in the array but we cannot alter the 
memory size allocated to the array.  Memory is allocated at compile time. 

As static data structures store a fixed number of data items they are easier to program, as 
there is no need to check on the size of the data structure or the number of items stored. 



46 

Dynamic data structure 

Dynamic data structures are designed to allow the data structure to grow or shrink at 
runtime.  It is possible to add new elements or remove existing elements without having to 
consider memory space.  Memory is allocated at runtime. 

Dynamic data structures make the most efficient use of memory but are more difficult to 
program, as you have to check the size of the data structure and the location of the data 
items each time you use the data. 

List 

A list is a data structure that has the data items stored in the order they were originally 
added to memory.  If the list is made up of a set number of data items, then it can be a 
static data structure.  If the list can vary in the number of data items, then it will be a 
dynamic data structure. 

Array 

An array is a data structure that can hold a fixed number of data items, which must be of the 
same data type i.e. real, integer, string etc. The data items in an array are known as 
elements. An array is an example of a static list. 

The elements in an array are identified by a number that indicates their position in the 
array.  This number is known as the index.  The first element in an array usually has an index 
of 0. 

Elements 

Index  0   1     2     3     4    5    6      7  

• There are 8 elements in this array.
• The index always starts at position 0.
• Each element can be accessed using its index.  The element at index 5 is 56.
• This type of array is known as a one-dimensional array.

Using one-dimensional arrays 

A one-dimensional array can be used to store a list of data in memory that can be used by a 
program at runtime.  There are basic operations that can be carried out on data in a one-
dimensional array.   

42 56 6 26 4 76 37 11 



47 

Traversing 

Traversing an array simply means using a loop to use each element of the array in a section 
of a program.  If you wanted to print out the contents of an array called myArray that has 10 
elements you would use a ‘for . . . . next’ loop.  Like this: 

Insertion 

You can add an element to an array at a given index. 

myArray[3] = 27 

This would store the value 27 at the index 3 of the array. 

Deletion 

You can delete an element from an array. 

myArray[6] = “” 

This would leave the memory at index 6 blank. 

Search 

Arrays can be search using the index or the value stored at the index. 

Two-dimensional arrays 

Often the data we want to process comes in the form of a table.  The data in a two-
dimensional array must all be of the same data type.   

For example, your teacher may have a spreadsheet of your class’ test results. 



48 

Elements in a two-dimensional array are indexed by two numbers – one for the row it is in 
and one for the column. 

If the two-dimensional array is called testMark then the command to declare this array 
would be: 

testMark [4,5] 

In this declaration, the 4 refers to the number of pupils (rows) and the 5 to the number of 
tests (columns).  The index for Sam’s marks for Test 2 would be [0,1]. 

To print out the pupils test marks you would need to use one loop inside another loop: 

Records 

Arrays can only hold data if it is all of the same data type.  If you need to hold related data of 
different data types you will need to use a data structure called a record.  A record will be 
made up of information about one person or thing.  Each piece of information in the record 
is called a field. 

For example, an after school club wants to store data about its members’ emergency 
contact information. 



49 

Record Structure 

Field Name Field Type Example data 

Membership Number Integer 1074 

First name String Sara 

Surname String Davies 

Date of Birth Date 12/07/2004 

Contact Name String Mrs Davies 

Contact phone number String 07564 191919 

Key field 

Each record in a file should have a key field.  That is an item of data that is unique and can 
be used to identify the individual record.  In this example the membership number would be 
the key field. 

Files 

For a computer to function it must have data flowing through the central processing unit 
(CPU) under the control of a program.  More often than not this data will have come from a 
stored file. 

A program will load the file from secondary storage, such as a hard disc, into the computer’s 
memory.  The data will be manipulated by the CPU and then output.  The output could be 
another data file, screen images or a document. 

Data stored in a file will have a structure and organisation known as the file format.  A data 
file will be made up of records.  It would be most efficient for the fields in a record to be 
stored next to each other so that the data can be read into the record data structure in 
memory for processing by the CPU. 

In summary – files are made of records of the same structure and records are made up of 
fields containing information about one person or item. 



50 

Validation 

Validation is a process to check that input data is reasonable or sensible. Frequently used 
validation algorithms include; 

Presence checks Used to prevent further progress if a required field is left 
blank. 

Format checks Used to ensure data matches a specific pattern, such as 
dd/mm/yyyy for a date. Input masks are often used to create 
format checks on database forms. 

Length checks Used to ensure an input data string is a sensible length e.g. 
number of characters in ‘firstName’ to be between 3 and 16 

Type checks Used to ensure input data is a particular data type e.g. 
quantity ordered to be integer or cost to be real. 

Range checks Used to ensure input data lies within a specified range e.g. 
over time hours to be > 0 and < 15. 

Look up checks can also be used to ensure that input data matches an item in a list of valid 
entries e.g. input look up “none”; ”vegetarian”; ”vegan” will limit the acceptable input to 
one of three entries. 

Verification 

Verification is a process for checking data is correct. It can be carried out as a user enters 
data, such as via a keyboard and also when data is copied from one part of a system to 
another. Copying should not change the data. 

Examples of verification of user input include double entry and screen based verification. 

Double entry involves comparing two versions of data input. e.g.” re-enter your email 
address”. A verification algorithm will compare the two versions and inform the user if they 
are not identical. 

Screen based verification requires the user to check a display of input data and confirm that 
it is correct. 

More sophisticated verification algorithms apply calculations to input data. e.g. to produce 
the check digits of bar codes. Repeating the calculations and checking that the result is the 
same can verify the data.  



51 

Similar verification algorithms, including parity checks and checksums, can be used when 
sending data between computers to check that the data has not been corrupted during 
transmission. 

Algorithm design - examples 

A. Design an algorithm that will sensibly validate the input data for a diving competition,
where entrants must be between 16 and 19 years of age. The competition is to
involve 5 dives, with each dive being awarded a score of between 0 and 20.

The algorithm should verify the entrants date of birth, check that they are eligible for
competition and ensure that sensible scores are recorded.

B. The table includes input data for a payroll system. Some of the data can be sensibly
validated.

Surname String 

National Insurance (NI) number Standard format LL123456L 

Job title Apprentice, semi-skilled, skilled, supervisor 

Week no. Integer 

Full time Y or N, Full time = 38 hours per week 

Hours worked Integer, hours worked in current week, maximum 10 hours 
overtime in one week. 

Overtime rate = 1.5 x pay rate 

Pay rate Real, hourly pay rate, max £15.00 / hour 

Write validation checks that will help to ensure that input is sensible. 




